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Abstract

This paper presents the differential transformation method to investigate the temperature field associated with the
Falkner—Skan boundary-layer problem. A group of transformations are used to reduce the boundary value problem
into a pair of initial value problems, which are then solved by means of the differential transformation method. The
proposed method yields closed series solutions of a system of the boundary layer equations, which can then be calcu-
lated numerically. Numerical results for the dimensionless velocity and temperature profiles of the wedge flow are pre-
sented graphically for different values of the wedge angle and Prandtl number. It is seen that the current results are in
good agreement with those provided by other numerical methods. Therefore, the method presented in this study pro-
vides an effective scheme for determining the solutions of a system of nonlinear boundary-layer problems.
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1. Introduction

A common area of interest in the field of aerodynam-
ics is the analysis of thermal boundary-layer problems
for two-dimensional steady and incompressible laminar
flow passing a wedge. These types of boundary-layer
problems are expressed in the form of nonlinear third-
order partial differential equations, which cannot be
solved directly in a closed form. Accordingly, it is neces-
sary to develop numerical methods capable of providing
accurate solutions for problems of these types. In their
pioneering work of 1931, Falkner and Skan [1] consid-
ered two-dimensional wedge flows. They developed a
similarity transformation method in which the partial
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differential boundary-layer equation was reduced to a
nonlinear third-order ordinary differential equation
which could then be solved numerically. In 1979, Na
[2] employed a group of transformations to reduce
third-order boundary value problem to a pair of initial
value problems and then solved these problems by
means of a forward integration scheme. In 1983, Raja-
gopal et al. [3] studied the Falkner—Skan boundary layer
flow of a homogeneous incompressible second grade
fluid past a wedge placed symmetrically with respect to
the flow direction. In 1987, Lin and Lin [4] introduced
a similarity solution method for the forced convection
heat transfer from isothermal or uniform-flux surfaces
to fluids of any Prandtl number. The solutions of the
resulting similarity equations are given by the Runge—
Kutta scheme. In 1997, Hsu et al. [5] studied the temper-
ature and flow fields of the flow past a wedge by the
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series expansion method, similarity transformation,
Runge-Kutta integration and the shooting method. In
1998, Asaithambi [6] presented a finite-difference meth-
od for solving the Falkner—Skan equation. Later, Hsu
and Hsiao [7] presented a combination of a series expan-
sion, similarity transformation and finite difference
method for the heat transfer problem of a second-grade
viscoelastic fluid past a plate fin. In our paper [8] em-
ployed a combination of the differential transformation
method and finite difference approximation to analyze
Burgers’ equation for various values of Reynolds
numbers.

The present study employs the differential trans-
formation method to obtain series solutions of the
Falkner—Skan thermal boundary-layer problem. Firstly,
a group of transformations are used to reduce the third-
order nonlinear boundary value problem to a pair of ini-
tial value problems. These problems are then solved by
the differential transformation method. The study con-
cludes by comparing the current numerical results with
those given by other integral approximation methods
in order to verify the accuracy of the proposed method.
Although the integral transformation method provides a
powerful technique to solve linear differential equations,
it is not so easily applied to the solution of nonlinear dif-
ferential equations. The differential transformation
method is better suited to solving this type of equation,
and is, therefore, the method that is adopted within this
present study. The differential transformation method
consists of three basic steps: (1) the differential equations
are transformed into algebraic equations, (2) these alge-
braic equations are solved, and (3) a process of inverse
transformation is applied to determine the solution of
the given problem. The differential transformation meth-
od yields a power series, close-form solution, and has the
advantage that nonlinear differential equations may be
solved directly, i.e. without the need for iterative
calculations.

Uy, To

2. Mathematical analysis

Consider the flow of an incompressible viscous fluid
over a wedge, as shown in Fig. 1. The temperature of
the wall, Ty, is uniform and constant and is greater than
the free stream temperature, T... It is assumed that the
free stream velocity, U, is also uniform and constant.
Further, assuming that the flow in the laminar boundary
layer is two-dimensional, and that the temperature
changes resulting from viscous dissipation are small,
the continuity equation and the boundary-layer equa-
tions may be expressed as

ou Ov
aJra—y—O, (1)

ou  ou dU = du
ua+va—U7+Vai))27 (2)
or dr T

U + v—ay = oc—ayz , (3)

where u and v are the respective velocity components in
the x- and y-direction of the fluid flow, v is the viscosity
of the fluid, and U is the reference velocity at the edge of
the boundary layer and is a function of x. o is the ther-
mal diffusivity of the fluid, 7 is the temperature in the
vicinity of the wedge, and the boundary conditions are
given by

aty=0:u=v=0, and T=T,, (4)

asy —oo:u— Ulx)=Uy(x/L)", and T=T,,
5)

atx=0:u=U, and T =T, (6)

where U, is the meanstream velocity, L is the length of
the wedge, m is the Falkner—Skan power-law parameter,
and x is measured from the tip of the wedge. A stream
function, Y(x,y), is introduced such that

Thermal boundary layer

Fig. 1. Velocity and thermal boundary layers for the Falkner—Skan wedge flow.
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u:a—lp and v:—a—lp. (7)
oy Ox
In addition to the physical considerations which re-
quire the introduction of this function, the mathematical
significance of its use is that the equation of continuity,
i.e. Eq. (1), is satisfied identically. The momentum equa-
tion becomes:

RUZ el 2L el 4 du 'y

aaxéy_a 0y? UEHa—yV ®

Integrating Eq. (7) and introducing a similarity vari-
able yields:

l+m L"
) =[5

(/xR ©)

1+mUy

= ), (10)

Substituting Eqs (9) and (10) into Eq. (8) gives
&*f(n) *f (n) dfm\°| _
o -(ar) } B

ar +f (11) ap +B|1
which is known as the Falkner-Skan boundary-layer
equation [1]. The boundary conditions of f{n) are given by

atn=0: f(O):d%(:):O, (12)
as ) — oo : dfé;o):l. (13)

Note that in the equations above, parameters f§ and
m are related through the expression = 2m/(1 + m).
A dimensionless temperature is defined as follows:
T-T
0=— 14
- (14)
If Eq. (14) is substituted into Eq. (3), the boundary-layer
energy equation then becomes:

2
o) Sg = (15)
with the following boundary conditions:

atn=0: 0=0, (16)
atn —o0: 0=1, (17)

where Pr is the Prandtl number, which is equal to the
ratio of the momentum diffusivity of the fluid to its
thermal diffusivity (i.e. Pr=v/a). Egs. (11) and (15)
present a system of ordinary differential equations for
the Falkner—Skan boundary-layer problem. Simulta-
neous solution of these two equations yields the velocity
and temperature profiles for the flow of a viscous fluid
passing a wedge. In order to solve the Falkner—Skan
boundary-layer equation for a family of values of f, it
is first necessary to define a dependent variable, g(y), i.e.

o)

et =5 (18)
Differentiating Eqs. (11)—(13) with respect to f§ gives
d’g(n) d*g(n) &*f (n)
& +f(n) QP +g(n) P

(YN, df () dg(n)

1 (dn o an = (19)
The boundary conditions are given by

dg(0) dg(o0) _
s0) =2 =0, L0 (20)

The method of superposition is used together with a
group of transformations to solve the boundary-layer
equation given in Eq. (19). Initially, the following
expression is defined:

g(n) = P(n) + Ci - Q(n), (21)

where C; is a constant to be determined.
Substituting Eq. (21) into Eq. (19) gives the following
pair of initial value problems:

d*P(n) d*P(n) d*f(n ) 41 (n) dP(n)
dn? + dn? +P0n) dn? 26 dp dpy

= (df—(”))z —1, (22)

with initial conditions of

dr(0)  d*P(0)

n 400
ap +f(n) ap +0O(n) ap

df(n) do(n) _
“2 g ey =" (24)

with initial conditions of

do(0) d0(0)
0) = =0 =1. 25
Substituting the boundary condition at infinity from Eq.
(20) into Eq. (21) gives the value of the parameter C; as

dP(cc) /dy
d0(o0)/dy (26)

To solve Eq. (11) at f = Ap, Eq. (11) is first solved for
the case of # =0 in order to establish the function f{1)
and its derivatives which appear in Egs. (22) and (24).
Solving Egs. (22)—(25) then gives P(1), O(y), and their
derivatives. The value of C is obtained by substituting
dP(c0)/dn and dQ(oo)/dn into Eq. (26). Given C,, the
values of g() are derived from Eq. (21) and are then
substituted into the rearranged form of Eq. (18) given
below to give the solutions of f{) at f = Ap, i.e.

Clzf
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f(’?)‘/::A/x :f(’m/f:o +g(n) - AB. (27)

This process is then repeated to calculate the solutions of
Eq. (11) for B =2AB, f =3Ap,..., etc.

Since the solutions of Eq. (11) for the various values
of f§ can be established from the previous calculations,
f(n) is also known and can be substituted into Eq. (15)
to solve the boundary-layer energy equation. Eq. (15)
is a linear second-order ordinary differential equation
with variable coefficients. The solution of this energy
equation can be obtained by using the method of super-
position. The following relationship is established:

0(n) = C(n) + C - D(n). (28)
Substituting Eq. (28) into Eq. (15) and separating the

resulting equations into a group of terms, gives two
initial value problems, i.e.

d*c(n) dc(n)

an +Pr-f(n,p) Tap 0, (29)
with initial conditions of

_0. _ o 4c(0)
n=0: C(0)=0, a 1, (30)
and
d’D(n) dD(n)

an +Pr'f('77ﬁ)'d—]1*0a (31)
with initial conditions of

o B dD(0)

Substituting Egs. (30) and (32) into Eq. (28) gives

do(o) _

The parameter “C,” in Eq. (28) can be calculated by
using the boundary condition given in Eq. (17). This
yields

1 - C(o0)
Cy, = Do)

By solving Egs. (29)—(32) then gives C(1), D(n), and
their derivatives. The value of C,, the values of 60(1)

are derived from Eq. (28). Hence, we have been deter-
mined the solutions of the Falkner-Skan wedge flow.

(34)

3. Numerical formulation—differential transformation
method

To solve Eq. (11) using the differential transforma-
tion method, it is first necessary to solve the Blasius
equation (ff = 0), i.e.

&’ (n) d&*f (n)
di? dn?

+/(n) =0. (35)

The boundary conditions are given by

at n=0: f(O):%(;):o, (36)

dree) (37)

asn — oo : a

The boundary value problems (Egs. (35)—(37)) can
then be reduced to a pair of initial value problems,
which are given by

CFE) | CFE)

drF(0) d*F(0)
=0: F(0)= =0, =1, 39
and by
&fn) o dEf )
with initial conditions of
. YO _, Ero_[ 1 P
1=00 JO="q7=0 g = |aroydE
(41)
These equations suggest a transformation of the form:
) ) 1 32
o o-1/3p _ a3 _
F@ =20, &= i= g

(42)

The differential transformation method is then used to
solve the pair of initial value problems (Egs. (38)—
(41)). Initially, the following expressions are defined:

"o =20, @)
and
(e = YO _dFE) (44)

dé dé

Thereafter, the third-order ordinary differential equation
(Eq. (38)) is reduced to a first-order ordinary differential
equation with the following form:

dz(¢) _

d—€+F(5)Z(é) =0. (45)
The initial conditions become

E=0: F(0)=y(0)=0, z(0)=1. (46)

By a process of inverse differential transformation,
the solutions of each sub-domain take m + 1 terms for
the power series, i.e.
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m 2\ k

PO =Y () P, 0<i<H, (47)
k=0 H;
m i k

(&) = (—) VK, 0<E<H, (48)
k=0 i
m 6 k

z(&) = (—) Zi(k), 0<¢<H, (49)
k=0 H;

where i=0,1,2,...,n indicates the ith sub-domain,

k=0,1,2,...,m represents the number of terms of the
power series, H,; represents the sub-domain interval,
and F;(k), Y{k) and Z(k) are the transformed functions
of F(&), y(&) and z{¢), respectively. From the initial
conditions (Eq. (46)) and the solution equations (Egs.
(47)~(49)), it can be seen that

Fo(0) =0, (50)
Y0(0) =0, (51)
Zo(0) = 6(k), where 6(k) = { (1) i ; 37 (52)

Performing differential transformation of Egs. (43)—
(45) gives the following:

%IE(H 1) = v,(k), (53)
k;,.l Yilk+1) = Z(k), (54)
%z,(m 1)+ Fy(k) * Zi(k)

SR /ﬁg‘w— Dzy=0.  (59)

The various values of F;(k), Yi{k) and Z(k) are
obtained by using Eqs. (53)—(55), together with the
transformed initial conditions, i.e. Eqs. (50)—(52). The
solution of Eq. (38) is then determined by means of
the inverse transformed equations, i.e. Egs. (47)—(49).

From Eq. (41), it can be shown that the value of
dF(c0)/d¢ approaches a limiting value in the final sub-
domain. In the expressions which follow, this limiting
value is represented by the parameter “1”. The following
expressions are also defined:

u(n) = dﬁ;") : (56)
and
v(n) = dl;;") _d ; 7(2'7) (57)

Hence, the third-order ordinary differential equation
(Eq. (40)) becomes a first-order ordinary differential
equation with the following form:

du(n)
dy

+.f(n) - v(n) = 0. (58)

The initial conditions become
£(0) =u(0) =0, wv(0) =212 (59)

As in the previous procedure, inverse differential
transformation is used to yield the following solutions:

n=0:

s =Y () 1. 0<n<H, (60)
”"(”):g%) Uk, 0<n<H, (61)
ot = (1) v 0<n<. (62)

where, as before, i =0,1,2,...,n indicates the ith sub-
domain, k =0,1,2,...,m represents the number of terms
of the power series, H; represents the sub-domain inter-
val, and f,(k), U{k) and V(k) are the transformed func-
tions of f{n), u{n) and v(y), respectively. From the
initial conditions (Eq. (59)) and the solution equations
(Egs. (60)—(62)), it can be shown that

75(0) =0, (63)
Uo(0) =0, (64)
Vo(0) = A2 5(k), where 3(k) = {:) ],:8 (65)

Eqgs. (56)—(58) undergo a process of differential trans-
formation to give the following:

k;ilfi(k-‘r 1) = Ui(k), (66)
kf Uik +1) = V,(k), 67)
k+, Vilk +1) + f.(k) % Vi(k)
k+1 ko
= Vilk+ 1)+;/i(k— nVi(l) =0. (68)

As in the solution of the previous initial value prob-
lem, when the various values of f,(k), Ufk) and Vi(k)
have been determined by using Egs. (66)—(68), together
with the transformed initial conditions (Egs. (63)-
(65)), the solution of Eq. (40) can be obtained by means
of the inverse transformed equations, i.e. Egs. (60)—(62).

Since the solutions of the boundary value problems
(Egs. (35)—(37)) can be established from the previous cal-
culations, f{(n) is also known and can be substituted into
Eq. (11) to solve the Falkner—Skan equation.

The differential transformation method is then used
to solve the pair of initial value problems given by
Egs. (22)—(25). Initially, the following expressions are
defined:

r(n) =—-, (69)
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and

stn) = )~ 20, (70)

Thereafter, the third-order ordinary differential equa-
tion (Eq. (22)) is reduced to a first-order ordinary differ-
ential equation with the following form:

B4 10 -sta) + S Py - 2L

_ (d%”) Y (71)
The initial conditions become
n=0: P(0)=r(0)=us(0)=0. (72)

As before, inverse differential transformation is used
to yield the following solutions:

m k

P =3 (7) Pwr. 0<n<m, 73)
m k

=3 () Rk, 00 <, (74)
TN

=3 (7] st 0<n<. (73)

where i=0,1,2,...,n indicates the ith sub-domain,

k=0,1,2,...,m represents the number of terms of the

power series, H; represents the sub-domain interval,
and P;(k), R{k) and S{k) are the transformed functions
of P{n), r{n) and s(#), respectively. From the initial con-
ditions (Eq. (72)) and the solution equations (Egs. (73)-
(75)), it can be shown that

Po(0) =0, (76)
Ry(0) =0, (77)
So(0) = 0. (78)

Eqgs. (69)—(71) undergo a process of differential trans-
formation to give the following:

L+ 1) = R, (79)

k+1

Ri(k+1) = Si(k), (80)

As in the solution of the previous initial value problem,
when the various values of P;(k), R{k) and S{k) have
been determined by using Eqs. (79)—(81), together with
the transformed initial conditions (Egs. (76)—(78)), the
solution of Eq. (71) can be obtained by means of the in-
verse transformed equations, i.e. Egs. (73)—(75). From
Eq. (74), it is noted that the value of dP(co)/dy ap-
proaches a limiting value in the final sub-domain. The
following expression is defined:

Al =260, (82)
and
Bm):dAWXzﬁQMX (83)

Thereafter, the third-order ordinary differential equa-
tion (Eq. (24)) is reduced to a first-order ordinary differ-
ential equation with the following form:

S+ oy -8 + 4 o)
— 2[)’%:’) -A(n) =0. (84)

n=0: Q(0)=4(0)=B(0)=0. (85)

Inverse differential transformation is again used to
yield the following solutions:

m k
om=> () o, 0<n<n. (36)
k=0 H;
m n k
A,‘ = o Zi k 5 0 < < Hi7 87
W= () aw. o< (57)
m n k
Bi = — F,‘ k y 0 < ¥ < 1‘[1'7 88
=3 (57) Bw. o< (59
where i=0,1,2,...,n indicates the ith sub-domain,
k=0,1,2,...,m represents the number of terms of the

power series, H; represents the sub-domain interval,
and Q,(k), 4;(k) and B;(k) are the transformed functions
of Q{n), A{(n) and B{(n), respectively. From the initial
conditions (Eq. (85)) and the solution equations (Egs.
(86)—(88)), it can be shown that

0,(0) =0, (89)
4y(0) =0, (90)
By(0) = 0. (91)

Egs. (82)—(84) undergo a process of differential trans-
formation to give the following:
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L0+ 1) = Ab), (92)
oAk 1) = BB, (93)
k+1

Y(k—=1)-Y(I) — o:(k). (94)
As in the solution of the previous initial value problem,
when the various values of Q,(k), 4,(k) and B;(k) have
been determined by using Egs. (92)—-(94), together with
the transformed initial conditions (Egs. (89)-(91)), the
solution of Eq. (84) can be obtained by means of the in-
verse transformed equations, i.e. Egs. (86)—(88). From
Eq. (87), it can be seen that the value of dQ(oco)/dn
approaches a limiting value in the final sub-domain.

The value of C is determined by substituting the val-
ues of dP(00)/dn and dQ(oc)/dn into Eq. (26). C;, P(n),
Q(n) and their derivatives are then substituted into Eq.
(21) to determine the value of g(n). Finally, g(#) is substi-
tuted into Eq. (27) to generate the solutions of the Falk-
ner—Skan boundary layer equation for various values of
B.

The solutions of the pair of linear second-order
ordinary differential equations (Egs. (29)-(32)) can be
obtained from the differential transformation method.
Initially, the following relationship is defined:

_dcn)
w(n) = W (95)
Substituting Eq. (95) into Eq. (29) gives
dw(n
S b ) wlo) =0 (96)
The initial conditions become
n=0: C0)=0, w(0)=1. (97)

By a process of inverse differential transformation,
the solutions of each sub-domain take m + 1 terms for
the power series, i.e.

cm =S (1 cw, o<n<m, 98
=3 (5) cw. o<y (98)
) =3 () Wi, o< (99)

where C;(k) and W{k) are the transformed functions of
C{n) and w{n), respectively. From the initial conditions
(Eq. (97)) and the solution equations (Egs. (98) and
(99)), it can be shown that

Co(0) =0, (100)
1 k=0,
Wo(0) = d(k), where 6(k) = {0 k0. (101)
Egs. (95) and (96) undergo the differential transfor-
mation to give the following:
k+1
W ) 70 < (0

_k+1
Witk + 1) +Zf

When the various values of C;(k) and Wj(k) have been
obtained by using Eqgs. (102) and (103), together with
the transformed initial conditions (Egs. (100) and
(101)), the solution of Eq. (29) can be determined by
using the inverse transformed equations, i.e. Egs. (98)
and (99). From Eq. (98), it is noted that the value of
C(o0) approaches a limiting value in the final sub-
domain. The following expression is established:

Cilk+1) = W,(k), (102)

wil)=0.  (103)

_dD(n)
x(n) = a (104)
Substituting Eq. (104) into Eq. (31) yields
d*x(n) dx(n)
e +P"f(’17ﬁ)'d7n—0~ (105)
The initial conditions become
n=0: D(0)=0, x(0)=1. (106)

By a process of inverse differential transformation,
the solutions of each sub-domain take m + 1 terms for
the power series, i.e.

m r] _
L <n< H:
kz; (H,-) D; 0<n<H,, (107)
m k
x(n) = (1’{_7> X,(k), 0<n<H, (108)
k=0 !

where D;(k) and X{(k) are the transformed functions of

Dyn) and x{n), respectively. From the initial conditions

(Eq. (106)) and the solution equations (Egs. (107) and

(108)), it is shown that

Dy(0) =0, (109)
1 k=0,

Xo(0) = o(k), where 6(k) = {0 k0. (110)

Eqgs. (104) and (105) undergo the differential transfor-
mation to give the following:
k+ 1
k+1

i

Di(k+1) = X;(k), (111)

Xi(k+ 1) + f (k) * X;(k)

k;] )+ 74 y=o0.  (112)

i 1=0
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When the various values of D;(k) and X, (k) have been
obtained by using Egs. (111) and (112), together with
the transformed initial conditions (Eqs. (109) and
(110)), the solution of Eq. (31) can be obtained from
the inverse transformed equations, i.e. Egs. (107) and
(108). From Eq. (107), it is established that the value
of D(oco) approaches a limiting value in the final sub-
domain.

4. Numerical results and discussion

The present study uses the differential transformation
method described above to generate a series of numeri-

cal results for the thermal boundary-layer problem in
the case of a two-dimensional incompressible flow pass-
ing over a wedge. By solving the initial value problem
(Egs. (38) and (39)), it can be seen that dF(co)/d¢ ap-
proaches a limiting value of 1.655190. Substituting the
value of dF(co)/d¢ into Eq. (42) gives a calculated value
of 1 equal to 0.469600. Using this value of A, Table 1
presents the current numerical results for the Falkner—
Skan boundary-layer problem for the case of f =0 in
terms of f{n) and its derivatives. From Table 1, the re-
sults obtained by the present method are in good agree-
ment with those provided by White [9] to about 6
decimal places. Fig. 2 plots the variation in the values
of f{n) and its derivatives for various values of f. The

Table 1
Results of the Falkner—Skan boundary-layer equation for the case of f =0
n S F') S

Present White [9] Present White [9] Present White [9]
.00 .000000 .00000 .000000 .00000 469600 46960
.10 .002348 .00235 .046959 .04696 469563 46956
.20 .009391 .00939 .093905 .09391 469306 46931
.30 .021128 .02113 .140806 .14081 468609 46861
40 .037549 .03755 .187605 .18761 467254 46725
.50 .058643 .05864 234228 .23423 465030 46503
.60 .084386 .08439 .280575 .28058 461734 46173
.70 114745 11474 326532 .32653 457178 45718
.80 .149674 .14967 .371963 37196 451190 45119
.90 189115 18911 416718 41672 443628 44363
1.00 .232990 23299 460633 46063 434379 43438
1.10 .281208 28121 .503535 .50354 423369 42337
1.20 .333657 .33366 .545246 .54525 410565 41057
1.30 .390211 .39021 .585589 .58559 .395985 .39598
1.40 450724 45072 .624386 .62439 379692 37969
1.50 515031 .51503 661474 .66147 361804 36180
1.60 .582956 .58296 .696700 .69670 .342487 .34249
1.70 .654305 .65430 729931 72993 321951 32195
1.80 728872 72887 761057 76106 .300445 .30045
1.90 .806443 .80644 789997 .79000 278251 27825
2.00 .886797 .88680 .816695 .81669 .255669 25567
2.20 1.054947 1.05495 .863304 .86330 .210580 21058
2.40 1.231528 1.23153 .901065 .90107 167560 16756
2.60 1.414824 1.41482 930601 .93060 128613 12861
2.80 1.603284 1.60328 952875 .95288 .095113 09511
3.00 1.795568 1.79557 .969055 .96905 .067710 06771
3.20 1.990581 1.99058 .980365 .98037 .046370 .04637
3.40 2.187467 2.18747 987970 98797 .030535 .03054
3.60 2.385590 2.38559 .992888 .99289 .019329 .01933
3.80 2.584499 2.58450 995944 .99594 .011759 .01176
4.00 2.783886 2.78388 997770 99777 .006874 .00687
4.20 2.983555 2.98355 .998818 .99882 .003861 .00386
4.40 3.183383 3.18338 .999397 .99940 .002084 .00208
4.60 3.383296 3.38329 .999703 .99970 .001081 .00108
4.80 3.583254 3.58325 .999859 .99986 .000538 .00054
5.00 3.783235 3.78323 999936 .99994 .000258 .00026
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Fig. 2. Numerical results of /(1) and its derivatives for various
values of f.

Table 2
Comparison of the results for the laminar boundary layer over
a wedge

B 7"(0)
Present method Rajagopal et al. [3]

.00 0.469600 0.469600
.05 0.531725 0.531130
.10 0.587889 0.587035
.20 0.687641 0.686708
.30 0.775524 0.774755
40 0.854937 0.854421
.50 0.927906 0.927680
.60 0.995758 0.995836
.70 1.059421 -

.80 1.119574 1.120268
.90 1.176730 -

1.00 1.231289 1.232585
1.20 1.333833 1.335722
1.60 1.518488 1.521514
2.00 1.683095 -

results indicate that steeper velocity profiles are associ-
ated with larger values of the wedge angle parameter,
p. The wedge angle parameter is a measure of the pres-
sure gradient, and so a positive value of f indicates a
negative (or favorable) pressure gradient. For acceler-
ated flows (i.e. positive values of f5), the f’ profiles
merely squeeze closer and closer to the wall, and over-
shoot or backflow phenomena are not noted. Table 2
presents a comparison of the current numerical results
of f”(0) for various values of f with those presented
by Rajagopal et al. [3]. It is noted that there is good
agreement between the two sets of results. Figs. 3 and
4 plot the dimensionless temperature distributions of
the Falkner-Skan boundary-layer problem for the Pra-
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Fig. 3. Dimensionless temperature profiles for f=0 and
various Prandtl number.
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Fig. 4. Dimensionless temperature profiles for =2 and
various Prandtl number.

ndtl number range of 0.001-10,000. Finally, Fig. 5
shows the dimensionless temperature profiles for various
values of f and Prandtl number. It is noted that the
maximum difference in the dimensionless temperature
distributions for various values of f occurs at larger
values of Prandtl number, and that this difference de-
creases as the Prandtl number decreases. Table 3 pre-
sents a comparison of the current numerical results of
dO(n)/dn for different values of f§ and Prandtl number
with those presented by White [9]. Once again, it is seen
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Fig. 5. Dimensionless temperature profiles for various values of  and Prandtl number.
Table 3
Numerical values of df()/dn for various Prandtl numbers and wedge angle parameters
do
Pr ﬁ”)
p=0.0 0.3 1.0 2.0
White [9] Present White [9] Present White [9] Present White [9] Present
0.001 0.02449 0.02449 0.02467 0.02468 0.02483 0.02483 0.02492 0.02492
0.003 0.04154 0.04154 0.04206 0.04207 0.04252 0.04253 0.04278 0.04279
0.006 0.05759 0.05760 0.05859 0.05862 0.05947 0.05949 0.05999 0.06001
0.010 0.07296 0.07296 0.07455 0.07458 0.07597 0.07599 0.07681 0.07683
0.030 0.11935 0.11935 0.12353 0.12360 0.12374 0.12740 0.12972 0.12968
0.060 0.16050 0.16050 0.16791 0.16802 0.17480 0.17488 0.17903 0.17908
0.100 0.19803 0.19803 0.20908 0.20923 0.21950 0.21962 0.22600 0.22608
0.300 0.30371 0.30372 0.32783 0.32812 0.35147 0.35168 0.36681 0.36695
0.600 0.39168 0.39168 0.42892 0.42932 0.46633 0.46661 0.49130 0.49149
0.720 0.41786 0.41809 0.45929 0.45998 0.50113 0.50174 0.52928 0.52980
1.000 0.46960 0.46960 0.51952 0.51999 0.57047 0.57080 0.60520 0.60541
2.000 0.59723 0.59723 0.66905 0.66963 0.74372 0.74412 0.79599 0.79624
3.000 0.68596 0.68596 0.77344 0.77409 0.86522 0.86565 0.93036 0.93062
6.000 0.86728 0.86728 0.98727 0.98806 1.1147 1.1152 1.2069 1.2072
10.000 1.02974 1.02974 1.1791 1.1800 1.3388 1.3394 1.4557 1.4561
30.000 1.4873 1.4873 1.7198 1.7210 1.9706 1.9714 2.1577 2.1582
60.000 1.8746 1.8746 2.1776 2.1791 2.5054 2.5063 2.7520 2.7525
100.000 2.2229 2.2229 2.5892 2.5910 2.9863 2.9874 3.2863 3.2869
400.000 3.5292 3.5292 4.1331 4.1359 4.7894 4.7910 5.2890 5.2900
1,000.000 4.7901 4.7901 5.6230 5.6268 6.5291 6.5314 7.2212 7.2225
4,000.000 7.6039 7.6039 8.9481 8.9540 10.4112 10.4147 11.5320 11.5341
10,000.000 10.3201 10.3201 12.1577 12.1657 14.1583 14.1630 15.6928 15.6956
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that there is good agreement between the two sets of
results.

5. Conclusions

The present paper has discussed the applicability of
the differential transformation method to obtain the
temperature distributions for a flow passing over a
wedge. The differential transformation method which
has been applied within the current study directly yields
a power series, close-form solution for a system of non-
linear differential equations and requires no iterative
calculations. Numerical results of the Falkner—Skan
thermal boundary-layer problem have been presented
in order to demonstrate the accuracy and versatility of
the differential transformation method. It has been dem-
onstrated that the obtained numerical results for the
velocity and temperature distributions are in good
agreement with those provided by other numerical
approximation methods. In this paper, the proposed
method provides an effective numerical scheme for
determining the solutions of the nonlinear Falkner-Skan
thermal boundary-layer problem.
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