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Abstract

This paper presents the differential transformation method to investigate the temperature field associated with the
Falkner–Skan boundary-layer problem. A group of transformations are used to reduce the boundary value problem
into a pair of initial value problems, which are then solved by means of the differential transformation method. The
proposed method yields closed series solutions of a system of the boundary layer equations, which can then be calcu-
lated numerically. Numerical results for the dimensionless velocity and temperature profiles of the wedge flow are pre-
sented graphically for different values of the wedge angle and Prandtl number. It is seen that the current results are in
good agreement with those provided by other numerical methods. Therefore, the method presented in this study pro-
vides an effective scheme for determining the solutions of a system of nonlinear boundary-layer problems.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A common area of interest in the field of aerodynam-
ics is the analysis of thermal boundary-layer problems
for two-dimensional steady and incompressible laminar
flow passing a wedge. These types of boundary-layer
problems are expressed in the form of nonlinear third-
order partial differential equations, which cannot be
solved directly in a closed form. Accordingly, it is neces-
sary to develop numerical methods capable of providing
accurate solutions for problems of these types. In their
pioneering work of 1931, Falkner and Skan [1] consid-
ered two-dimensional wedge flows. They developed a
similarity transformation method in which the partial
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differential boundary-layer equation was reduced to a
nonlinear third-order ordinary differential equation
which could then be solved numerically. In 1979, Na
[2] employed a group of transformations to reduce
third-order boundary value problem to a pair of initial
value problems and then solved these problems by
means of a forward integration scheme. In 1983, Raja-
gopal et al. [3] studied the Falkner–Skan boundary layer
flow of a homogeneous incompressible second grade
fluid past a wedge placed symmetrically with respect to
the flow direction. In 1987, Lin and Lin [4] introduced
a similarity solution method for the forced convection
heat transfer from isothermal or uniform-flux surfaces
to fluids of any Prandtl number. The solutions of the
resulting similarity equations are given by the Runge–
Kutta scheme. In 1997, Hsu et al. [5] studied the temper-
ature and flow fields of the flow past a wedge by the
ed.
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series expansion method, similarity transformation,
Runge-Kutta integration and the shooting method. In
1998, Asaithambi [6] presented a finite-difference meth-
od for solving the Falkner–Skan equation. Later, Hsu
and Hsiao [7] presented a combination of a series expan-
sion, similarity transformation and finite difference
method for the heat transfer problem of a second-grade
viscoelastic fluid past a plate fin. In our paper [8] em-
ployed a combination of the differential transformation
method and finite difference approximation to analyze
Burgers� equation for various values of Reynolds
numbers.

The present study employs the differential trans-
formation method to obtain series solutions of the
Falkner–Skan thermal boundary-layer problem. Firstly,
a group of transformations are used to reduce the third-
order nonlinear boundary value problem to a pair of ini-
tial value problems. These problems are then solved by
the differential transformation method. The study con-
cludes by comparing the current numerical results with
those given by other integral approximation methods
in order to verify the accuracy of the proposed method.
Although the integral transformation method provides a
powerful technique to solve linear differential equations,
it is not so easily applied to the solution of nonlinear dif-
ferential equations. The differential transformation
method is better suited to solving this type of equation,
and is, therefore, the method that is adopted within this
present study. The differential transformation method
consists of three basic steps: (1) the differential equations
are transformed into algebraic equations, (2) these alge-
braic equations are solved, and (3) a process of inverse
transformation is applied to determine the solution of
the given problem. The differential transformation meth-
od yields a power series, close-form solution, and has the
advantage that nonlinear differential equations may be
solved directly, i.e. without the need for iterative
calculations.
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Fig. 1. Velocity and thermal boundary laye
2. Mathematical analysis

Consider the flow of an incompressible viscous fluid
over a wedge, as shown in Fig. 1. The temperature of
the wall, Tw, is uniform and constant and is greater than
the free stream temperature, T1. It is assumed that the
free stream velocity, U1, is also uniform and constant.
Further, assuming that the flow in the laminar boundary
layer is two-dimensional, and that the temperature
changes resulting from viscous dissipation are small,
the continuity equation and the boundary-layer equa-
tions may be expressed as
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where u and v are the respective velocity components in
the x- and y-direction of the fluid flow, m is the viscosity
of the fluid, and U is the reference velocity at the edge of
the boundary layer and is a function of x. a is the ther-
mal diffusivity of the fluid, T is the temperature in the
vicinity of the wedge, and the boundary conditions are
given by

at y ¼ 0 : u ¼ v ¼ 0; and T ¼ T w; ð4Þ

as y ! 1 : u ! UðxÞ ¼ U1ðx=LÞm; and T ¼ T1;

ð5Þ

at x ¼ 0 : u ¼ U1 and T ¼ T1; ð6Þ

where U1 is the meanstream velocity, L is the length of
the wedge, m is the Falkner–Skan power-law parameter,
and x is measured from the tip of the wedge. A stream
function, W(x,y), is introduced such that
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u ¼ oW
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and v ¼ � oW
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. ð7Þ

In addition to the physical considerations which re-
quire the introduction of this function, the mathematical
significance of its use is that the equation of continuity,
i.e. Eq. (1), is satisfied identically. The momentum equa-
tion becomes:
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þ m
o3W
oy3

. ð8Þ

Integrating Eq. (7) and introducing a similarity vari-
able yields:

f ðgÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m
2

Lm

mU1

s
� ðW=xð1þmÞ=2Þ; ð9Þ

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m
2

U1

mLm

r
� ðy=xð1�mÞ=2Þ. ð10Þ

Substituting Eqs. (9) and (10) into Eq. (8) gives

d3f ðgÞ
dg3

þ f ðgÞd
2f ðgÞ
dg2

þ b 1� df ðgÞ
dg

� �2
" #

¼ 0; ð11Þ

which is known as the Falkner–Skan boundary-layer
equation [1]. The boundary conditions of f(g) are given by

at g ¼ 0 : f ð0Þ ¼ df ð0Þ
dg

¼ 0; ð12Þ

as g ! 1 :
df ð1Þ
dg

¼ 1. ð13Þ

Note that in the equations above, parameters b and
m are related through the expression b = 2m/(1 + m).
A dimensionless temperature is defined as follows:

h ¼ T � T w

T1 � T w

. ð14Þ

If Eq. (14) is substituted into Eq. (3), the boundary-layer
energy equation then becomes:

d2hðgÞ
dg2

þ Pr � f ðg; bÞ � dhðgÞ
dg

¼ 0; ð15Þ

with the following boundary conditions:

at g ¼ 0 : h ¼ 0; ð16Þ
at g ! 1 : h ¼ 1; ð17Þ

where Pr is the Prandtl number, which is equal to the
ratio of the momentum diffusivity of the fluid to its
thermal diffusivity (i.e. Pr = m/a). Eqs. (11) and (15)
present a system of ordinary differential equations for
the Falkner–Skan boundary-layer problem. Simulta-
neous solution of these two equations yields the velocity
and temperature profiles for the flow of a viscous fluid
passing a wedge. In order to solve the Falkner–Skan
boundary-layer equation for a family of values of b, it
is first necessary to define a dependent variable, g(g), i.e.
gðgÞ ¼ of ðgÞ
ob

. ð18Þ

Differentiating Eqs. (11)–(13) with respect to b gives

d3gðgÞ
dg3

þ f ðgÞd
2gðgÞ
dg2

þ gðgÞd
2f ðgÞ
dg2

þ 1� df ðgÞ
dg

� �2
" #

� 2b
df ðgÞ
dg

dgðgÞ
dg

¼ 0. ð19Þ

The boundary conditions are given by

gð0Þ ¼ dgð0Þ
dg

¼ 0;
dgð1Þ
dg

¼ 0. ð20Þ

The method of superposition is used together with a
group of transformations to solve the boundary-layer
equation given in Eq. (19). Initially, the following
expression is defined:

gðgÞ ¼ P ðgÞ þ C1 � QðgÞ; ð21Þ

where C1 is a constant to be determined.
Substituting Eq. (21) into Eq. (19) gives the following

pair of initial value problems:

d3P ðgÞ
dg3

þ f ðgÞd
2P ðgÞ
dg2

þ PðgÞ d
2f ðgÞ
dg2

� 2b
df ðgÞ
dg

dP ðgÞ
dg

¼ df ðgÞ
dg

� �2

� 1; ð22Þ

with initial conditions of

P ð0Þ ¼ dP ð0Þ
dg

¼ d2P ð0Þ
dg2

¼ 0; ð23Þ

and

d3QðgÞ
dg3

þ f ðgÞd
2QðgÞ
dg2

þ QðgÞd
2f ðgÞ
dg2

� 2b
df ðgÞ
dg

dQðgÞ
dg

¼ 0; ð24Þ

with initial conditions of

Qð0Þ ¼ dQð0Þ
dg

¼ 0;
d2Qð0Þ
dg2

¼ 1. ð25Þ

Substituting the boundary condition at infinity from Eq.
(20) into Eq. (21) gives the value of the parameter C1 as

C1 ¼ � dP ð1Þ=dg
dQð1Þ=dg . ð26Þ

To solve Eq. (11) at b = Db, Eq. (11) is first solved for
the case of b = 0 in order to establish the function f(g)
and its derivatives which appear in Eqs. (22) and (24).
Solving Eqs. (22)–(25) then gives P(g), Q(g), and their
derivatives. The value of C1 is obtained by substituting
dP(1)/dg and dQ(1)/dg into Eq. (26). Given C1, the
values of g(g) are derived from Eq. (21) and are then
substituted into the rearranged form of Eq. (18) given
below to give the solutions of f(g) at b = Db, i.e.
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f ðgÞjb¼Db ¼ f ðgÞjb¼0 þ gðgÞ � Db. ð27Þ

This process is then repeated to calculate the solutions of
Eq. (11) for b = 2Db, b = 3Db, . . . , etc.

Since the solutions of Eq. (11) for the various values
of b can be established from the previous calculations,
f(g) is also known and can be substituted into Eq. (15)
to solve the boundary-layer energy equation. Eq. (15)
is a linear second-order ordinary differential equation
with variable coefficients. The solution of this energy
equation can be obtained by using the method of super-
position. The following relationship is established:

hðgÞ ¼ CðgÞ þ C2 � DðgÞ. ð28Þ

Substituting Eq. (28) into Eq. (15) and separating the
resulting equations into a group of terms, gives two
initial value problems, i.e.

d2CðgÞ
dg2

þ Pr � f ðg; bÞ � dCðgÞ
dg

¼ 0; ð29Þ

with initial conditions of

g ¼ 0 : Cð0Þ ¼ 0;
dCð0Þ
dg

¼ 1; ð30Þ

and

d2DðgÞ
dg2

þ Pr � f ðg; bÞ � dDðgÞ
dg

¼ 0; ð31Þ

with initial conditions of

g ¼ 0 : Dð0Þ ¼ 0;
dDð0Þ
dg

¼ �1. ð32Þ

Substituting Eqs. (30) and (32) into Eq. (28) gives

dhð0Þ
dg

¼ 1� C2. ð33Þ

The parameter ‘‘C2’’ in Eq. (28) can be calculated by
using the boundary condition given in Eq. (17). This
yields

C2 ¼
1� Cð1Þ
Dð1Þ . ð34Þ

By solving Eqs. (29)–(32) then gives C(g), D(g), and
their derivatives. The value of C2, the values of h(g)
are derived from Eq. (28). Hence, we have been deter-
mined the solutions of the Falkner–Skan wedge flow.
3. Numerical formulation—differential transformation

method

To solve Eq. (11) using the differential transforma-
tion method, it is first necessary to solve the Blasius
equation (b = 0), i.e.

d3f ðgÞ
dg3

þ f ðgÞd
2f ðgÞ
dg2

¼ 0. ð35Þ
The boundary conditions are given by

at g ¼ 0 : f ð0Þ ¼ df ð0Þ
dg

¼ 0; ð36Þ

as g ! 1 :
df ð1Þ
dg

¼ 1. ð37Þ

The boundary value problems (Eqs. (35)–(37)) can
then be reduced to a pair of initial value problems,
which are given by

d3F ðnÞ
dn3

þ F ðnÞd
2F ðnÞ
dn2

¼ 0; ð38Þ

with initial conditions of

n ¼ 0 : F ð0Þ ¼ dF ð0Þ
dn

¼ 0;
d2F ð0Þ
dn2

¼ 1; ð39Þ

and by

d3f ðgÞ
dg3

þ f ðgÞ d
2f ðgÞ
dg2

¼ 0; ð40Þ

with initial conditions of

g ¼ 0 : f ð0Þ ¼ df ð0Þ
dg

¼ 0;
d2f ð0Þ
dg2

¼ 1

dF ð1Þ=dn

� �3=2
.

ð41Þ

These equations suggest a transformation of the form:

F ðnÞ ¼ k�1=3f ðgÞ; n ¼ k1=3g; k ¼ 1

dF ð1Þ=dn

� �3=2
.

ð42Þ

The differential transformation method is then used to
solve the pair of initial value problems (Eqs. (38)–
(41)). Initially, the following expressions are defined:

yðnÞ ¼ dF ðnÞ
dn

; ð43Þ

and

zðnÞ ¼ dyðnÞ
dn

¼ d2F ðnÞ
dn2

. ð44Þ

Thereafter, the third-order ordinary differential equation
(Eq. (38)) is reduced to a first-order ordinary differential
equation with the following form:

dzðnÞ
dn

þ F ðnÞ � zðnÞ ¼ 0. ð45Þ

The initial conditions become

n ¼ 0 : F ð0Þ ¼ yð0Þ ¼ 0; zð0Þ ¼ 1. ð46Þ

By a process of inverse differential transformation,
the solutions of each sub-domain take m + 1 terms for
the power series, i.e.
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F iðnÞ ¼
Xm
k¼0

n
Hi

� �k

F iðkÞ; 0 6 n 6 Hi; ð47Þ

yiðnÞ ¼
Xm
k¼0

n
Hi

� �k

Y iðkÞ; 0 6 n 6 Hi; ð48Þ

ziðnÞ ¼
Xm
k¼0

n
Hi

� �k

ZiðkÞ; 0 6 n 6 Hi; ð49Þ

where i = 0,1,2, . . . ,n indicates the ith sub-domain,
k = 0,1,2, . . . ,m represents the number of terms of the
power series, Hi represents the sub-domain interval,
and F iðkÞ, Yi(k) and Zi(k) are the transformed functions
of Fi(n), yi(n) and zi(n), respectively. From the initial
conditions (Eq. (46)) and the solution equations (Eqs.
(47)–(49)), it can be seen that

F 0ð0Þ ¼ 0; ð50Þ
Y 0ð0Þ ¼ 0; ð51Þ

Z0ð0Þ ¼ dðkÞ; where dðkÞ ¼
1 k ¼ 0;

0 k 6¼ 0.

�
ð52Þ

Performing differential transformation of Eqs. (43)–
(45) gives the following:

k þ 1

Hi
F iðk þ 1Þ ¼ Y iðkÞ; ð53Þ

k þ 1

Hi
Y iðk þ 1Þ ¼ ZiðkÞ; ð54Þ

k þ 1

Hi
Ziðk þ 1Þ þ F iðkÞ � ZiðkÞ

¼ k þ 1

Hi
Ziðk þ 1Þ þ

Xk

l¼0

F iðk � lÞZiðlÞ ¼ 0. ð55Þ

The various values of F iðkÞ, Yi(k) and Zi(k) are
obtained by using Eqs. (53)–(55), together with the
transformed initial conditions, i.e. Eqs. (50)–(52). The
solution of Eq. (38) is then determined by means of
the inverse transformed equations, i.e. Eqs. (47)–(49).

From Eq. (41), it can be shown that the value of
dF(1)/dn approaches a limiting value in the final sub-
domain. In the expressions which follow, this limiting
value is represented by the parameter ‘‘k’’. The following
expressions are also defined:

uðgÞ ¼ df ðgÞ
dg

; ð56Þ

and

vðgÞ ¼ duðgÞ
dg

¼ d2f ðgÞ
dg2

. ð57Þ

Hence, the third-order ordinary differential equation
(Eq. (40)) becomes a first-order ordinary differential
equation with the following form:

dvðgÞ
dg

þ f ðgÞ � vðgÞ ¼ 0. ð58Þ
The initial conditions become

g ¼ 0 : f ð0Þ ¼ uð0Þ ¼ 0; vð0Þ ¼ k�3=2. ð59Þ

As in the previous procedure, inverse differential
transformation is used to yield the following solutions:

fiðgÞ ¼
Xm
k¼0

g
Hi

� �k

�f iðkÞ; 0 6 g 6 Hi; ð60Þ

uiðgÞ ¼
Xm
k¼0

g
Hi

� �k

U iðkÞ; 0 6 g 6 Hi; ð61Þ

viðgÞ ¼
Xm
k¼0

g
Hi

� �k

V iðkÞ; 0 6 g 6 Hi; ð62Þ

where, as before, i = 0,1,2, . . . ,n indicates the ith sub-
domain, k = 0,1,2, . . . ,m represents the number of terms
of the power series, Hi represents the sub-domain inter-
val, and �f iðkÞ, Ui(k) and Vi(k) are the transformed func-
tions of fi(g), ui(g) and vi(g), respectively. From the
initial conditions (Eq. (59)) and the solution equations
(Eqs. (60)–(62)), it can be shown that

�f 0ð0Þ ¼ 0; ð63Þ
U 0ð0Þ ¼ 0; ð64Þ

V 0ð0Þ ¼ k�3=2 � dðkÞ; where dðkÞ ¼
1 k ¼ 0;

0 k 6¼ 0.

�
ð65Þ

Eqs. (56)–(58) undergo a process of differential trans-
formation to give the following:

k þ 1

Hi

�f iðk þ 1Þ ¼ UiðkÞ; ð66Þ

k þ 1

Hi
Uiðk þ 1Þ ¼ V iðkÞ; ð67Þ

k þ 1

Hi
V iðk þ 1Þ þ �f iðkÞ � V iðkÞ

¼ k þ 1

Hi
V iðk þ 1Þ þ

Xk

l¼0

�f iðk � lÞV iðlÞ ¼ 0. ð68Þ

As in the solution of the previous initial value prob-
lem, when the various values of �f iðkÞ, Ui(k) and Vi(k)
have been determined by using Eqs. (66)–(68), together
with the transformed initial conditions (Eqs. (63)–
(65)), the solution of Eq. (40) can be obtained by means
of the inverse transformed equations, i.e. Eqs. (60)–(62).

Since the solutions of the boundary value problems
(Eqs. (35)–(37)) can be established from the previous cal-
culations, f(g) is also known and can be substituted into
Eq. (11) to solve the Falkner–Skan equation.

The differential transformation method is then used
to solve the pair of initial value problems given by
Eqs. (22)–(25). Initially, the following expressions are
defined:

rðgÞ ¼ dP ðgÞ
dg

; ð69Þ
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and

sðgÞ ¼ drðgÞ
dg

¼ d2P ðgÞ
dg2

. ð70Þ

Thereafter, the third-order ordinary differential equa-
tion (Eq. (22)) is reduced to a first-order ordinary differ-
ential equation with the following form:

dsðgÞ
dg

þ f ðgÞ � sðgÞ þ d2f ðgÞ
dg2

� PðgÞ � 2b
df ðgÞ
dg

� rðgÞ

¼ df ðgÞ
dg

� �2

� 1. ð71Þ

The initial conditions become

g ¼ 0 : Pð0Þ ¼ rð0Þ ¼ sð0Þ ¼ 0. ð72Þ

As before, inverse differential transformation is used
to yield the following solutions:

P iðgÞ ¼
Xm
k¼0

g
Hi

� �k

P iðkÞ; 0 6 g 6 Hi; ð73Þ

riðgÞ ¼
Xm
k¼0

g
Hi

� �k

RiðkÞ; 0 6 g 6 Hi; ð74Þ

siðgÞ ¼
Xm
k¼0

g
Hi

� �k

SiðkÞ; 0 6 g 6 Hi; ð75Þ

where i = 0,1,2, . . . ,n indicates the ith sub-domain,
k = 0,1,2, . . . ,m represents the number of terms of the
power series, Hi represents the sub-domain interval,
and P iðkÞ, Ri(k) and Si(k) are the transformed functions
of Pi(g), ri(g) and si(g), respectively. From the initial con-
ditions (Eq. (72)) and the solution equations (Eqs. (73)–
(75)), it can be shown that

P 0ð0Þ ¼ 0; ð76Þ
R0ð0Þ ¼ 0; ð77Þ
S0ð0Þ ¼ 0. ð78Þ

Eqs. (69)–(71) undergo a process of differential trans-
formation to give the following:

k þ 1

Hi
P iðk þ 1Þ ¼ RiðkÞ; ð79Þ

k þ 1

Hi
Riðk þ 1Þ ¼ SiðkÞ; ð80Þ

k þ 1

Hi
Siðk þ 1Þ þ

Xk

l¼0

�f iðk � lÞ � SiðlÞ

þ
Xk

l¼0

Ziðk � lÞ � P iðlÞ � 2b
Xk

l¼0

Y ðk � lÞ � RðlÞ

¼
Xk

l¼0

Y ðk � lÞ � Y ðlÞ � diðkÞ. ð81Þ
As in the solution of the previous initial value problem,
when the various values of P iðkÞ, Ri(k) and Si(k) have
been determined by using Eqs. (79)–(81), together with
the transformed initial conditions (Eqs. (76)–(78)), the
solution of Eq. (71) can be obtained by means of the in-
verse transformed equations, i.e. Eqs. (73)–(75). From
Eq. (74), it is noted that the value of dP(1)/dg ap-
proaches a limiting value in the final sub-domain. The
following expression is defined:

AðgÞ ¼ dQðgÞ
dg

; ð82Þ

and

BðgÞ ¼ dAðgÞ
dg

¼ d2QðgÞ
dg2

. ð83Þ

Thereafter, the third-order ordinary differential equa-
tion (Eq. (24)) is reduced to a first-order ordinary differ-
ential equation with the following form:

dBðgÞ
dg

þ f ðgÞ � BðgÞ þ d2f ðgÞ
dg2

� QðgÞ

� 2b
df ðgÞ
dg

� AðgÞ ¼ 0. ð84Þ

The initial conditions become

g ¼ 0 : Qð0Þ ¼ Að0Þ ¼ Bð0Þ ¼ 0. ð85Þ

Inverse differential transformation is again used to
yield the following solutions:

QiðgÞ ¼
Xm
k¼0

g
Hi

� �k

QiðkÞ; 0 6 g 6 Hi; ð86Þ

AiðgÞ ¼
Xm
k¼0

g
Hi

� �k

AiðkÞ; 0 6 g 6 Hi; ð87Þ

BiðgÞ ¼
Xm
k¼0

g
Hi

� �k

BiðkÞ; 0 6 g 6 Hi; ð88Þ

where i = 0,1,2, . . . ,n indicates the ith sub-domain,
k = 0,1,2, . . . ,m represents the number of terms of the
power series, Hi represents the sub-domain interval,
and QiðkÞ, AiðkÞ and BiðkÞ are the transformed functions
of Qi(g), Ai(g) and Bi(g), respectively. From the initial
conditions (Eq. (85)) and the solution equations (Eqs.
(86)–(88)), it can be shown that

Q0ð0Þ ¼ 0; ð89Þ

A0ð0Þ ¼ 0; ð90Þ

B0ð0Þ ¼ 0. ð91Þ

Eqs. (82)–(84) undergo a process of differential trans-
formation to give the following:
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k þ 1

Hi
Qiðk þ 1Þ ¼ AiðkÞ; ð92Þ

k þ 1

Hi
Aiðk þ 1Þ ¼ BiðkÞ; ð93Þ

k þ 1

Hi
Biðk þ 1Þ þ

Xk

l¼0

�f iðk � lÞ � BiðlÞ

þ
Xk

l¼0

Ziðk � lÞ � QiðlÞ � 2b
Xk

l¼0

Y ðk � lÞ � AðlÞ

¼
Xk

l¼0

Y ðk � lÞ � Y ðlÞ � diðkÞ. ð94Þ

As in the solution of the previous initial value problem,
when the various values of QiðkÞ, AiðkÞ and BiðkÞ have
been determined by using Eqs. (92)–(94), together with
the transformed initial conditions (Eqs. (89)–(91)), the
solution of Eq. (84) can be obtained by means of the in-
verse transformed equations, i.e. Eqs. (86)–(88). From
Eq. (87), it can be seen that the value of dQ(1)/dg
approaches a limiting value in the final sub-domain.

The value of C1 is determined by substituting the val-
ues of dP(1)/dg and dQ(1)/dg into Eq. (26). C1, P(g),
Q(g) and their derivatives are then substituted into Eq.
(21) to determine the value of g(g). Finally, g(g) is substi-
tuted into Eq. (27) to generate the solutions of the Falk-
ner–Skan boundary layer equation for various values of
b.

The solutions of the pair of linear second-order
ordinary differential equations (Eqs. (29)–(32)) can be
obtained from the differential transformation method.
Initially, the following relationship is defined:

wðgÞ ¼ dCðgÞ
dg

. ð95Þ

Substituting Eq. (95) into Eq. (29) gives

dwðgÞ
dg

þ Pr � f ðg; bÞ � wðgÞ ¼ 0. ð96Þ

The initial conditions become

g ¼ 0 : Cð0Þ ¼ 0; wð0Þ ¼ 1. ð97Þ

By a process of inverse differential transformation,
the solutions of each sub-domain take m + 1 terms for
the power series, i.e.

CiðgÞ ¼
Xm
k¼0

g
Hi

� �k

CiðkÞ; 0 6 g 6 Hi; ð98Þ

wiðgÞ ¼
Xm
k¼0

g
Hi

� �k

W iðkÞ; 0 6 g 6 Hi; ð99Þ

where CiðkÞ and Wi(k) are the transformed functions of
Ci(g) and wi(g), respectively. From the initial conditions
(Eq. (97)) and the solution equations (Eqs. (98) and
(99)), it can be shown that
C0ð0Þ ¼ 0; ð100Þ

W 0ð0Þ ¼ dðkÞ; where dðkÞ ¼
1 k ¼ 0;

0 k 6¼ 0.

�
ð101Þ

Eqs. (95) and (96) undergo the differential transfor-
mation to give the following:

k þ 1

Hi
Ciðk þ 1Þ ¼ W iðkÞ; ð102Þ

k þ 1

Hi
W iðk þ 1Þ þ �f iðkÞ � W iðkÞ

¼ k þ 1

Hi
W iðk þ 1Þ þ

Xk

l¼0

�f iðk � lÞW iðlÞ ¼ 0. ð103Þ

When the various values of CiðkÞ and Wi(k) have been
obtained by using Eqs. (102) and (103), together with
the transformed initial conditions (Eqs. (100) and
(101)), the solution of Eq. (29) can be determined by
using the inverse transformed equations, i.e. Eqs. (98)
and (99). From Eq. (98), it is noted that the value of
C(1) approaches a limiting value in the final sub-
domain. The following expression is established:

xðgÞ ¼ dDðgÞ
dg

. ð104Þ

Substituting Eq. (104) into Eq. (31) yields

d2xðgÞ
dg2

þ Pr � f ðg; bÞ � dxðgÞ
dg

¼ 0. ð105Þ

The initial conditions become

g ¼ 0 : Dð0Þ ¼ 0; xð0Þ ¼ 1. ð106Þ
By a process of inverse differential transformation,

the solutions of each sub-domain take m + 1 terms for
the power series, i.e.

DiðgÞ ¼
Xm
k¼0

g
Hi

� �k

DiðkÞ; 0 6 g 6 Hi; ð107Þ

xiðgÞ ¼
Xm
k¼0

g
Hi

� �k

X iðkÞ; 0 6 g 6 Hi; ð108Þ

where DiðkÞ and Xi(k) are the transformed functions of
Di(g) and xi(g), respectively. From the initial conditions
(Eq. (106)) and the solution equations (Eqs. (107) and
(108)), it is shown that

D0ð0Þ ¼ 0; ð109Þ

X 0ð0Þ ¼ dðkÞ; where dðkÞ ¼
1 k ¼ 0;

0 k 6¼ 0.

�
ð110Þ

Eqs. (104) and (105) undergo the differential transfor-
mation to give the following:

k þ 1

Hi
Diðk þ 1Þ ¼ X iðkÞ; ð111Þ

k þ 1

Hi
X iðk þ 1Þ þ �f iðkÞ � X iðkÞ

¼ k þ 1

Hi
X iðk þ 1Þ þ

Xk

l¼0

�f iðk � lÞX iðlÞ ¼ 0. ð112Þ
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When the various values of DiðkÞ and Xi(k) have been
obtained by using Eqs. (111) and (112), together with
the transformed initial conditions (Eqs. (109) and
(110)), the solution of Eq. (31) can be obtained from
the inverse transformed equations, i.e. Eqs. (107) and
(108). From Eq. (107), it is established that the value
of D(1) approaches a limiting value in the final sub-
domain.
4. Numerical results and discussion

The present study uses the differential transformation
method described above to generate a series of numeri-
Table 1
Results of the Falkner–Skan boundary-layer equation for the case of

g f (g) f 0(g)

Present White [9] Present

.00 .000000 .00000 .000000

.10 .002348 .00235 .046959

.20 .009391 .00939 .093905

.30 .021128 .02113 .140806

.40 .037549 .03755 .187605

.50 .058643 .05864 .234228

.60 .084386 .08439 .280575

.70 .114745 .11474 .326532

.80 .149674 .14967 .371963

.90 .189115 .18911 .416718
1.00 .232990 .23299 .460633
1.10 .281208 .28121 .503535
1.20 .333657 .33366 .545246
1.30 .390211 .39021 .585589
1.40 .450724 .45072 .624386
1.50 .515031 .51503 .661474
1.60 .582956 .58296 .696700
1.70 .654305 .65430 .729931
1.80 .728872 .72887 .761057
1.90 .806443 .80644 .789997
2.00 .886797 .88680 .816695
2.20 1.054947 1.05495 .863304
2.40 1.231528 1.23153 .901065
2.60 1.414824 1.41482 .930601
2.80 1.603284 1.60328 .952875
3.00 1.795568 1.79557 .969055
3.20 1.990581 1.99058 .980365
3.40 2.187467 2.18747 .987970
3.60 2.385590 2.38559 .992888
3.80 2.584499 2.58450 .995944
4.00 2.783886 2.78388 .997770
4.20 2.983555 2.98355 .998818
4.40 3.183383 3.18338 .999397
4.60 3.383296 3.38329 .999703
4.80 3.583254 3.58325 .999859
5.00 3.783235 3.78323 .999936
cal results for the thermal boundary-layer problem in
the case of a two-dimensional incompressible flow pass-
ing over a wedge. By solving the initial value problem
(Eqs. (38) and (39)), it can be seen that dF(1)/dn ap-
proaches a limiting value of 1.655190. Substituting the
value of dF(1)/dn into Eq. (42) gives a calculated value
of k equal to 0.469600. Using this value of k, Table 1
presents the current numerical results for the Falkner–
Skan boundary-layer problem for the case of b = 0 in
terms of f(g) and its derivatives. From Table 1, the re-
sults obtained by the present method are in good agree-
ment with those provided by White [9] to about 6
decimal places. Fig. 2 plots the variation in the values
of f(g) and its derivatives for various values of b. The
b = 0

f 00(g)

White [9] Present White [9]

.00000 .469600 .46960

.04696 .469563 .46956

.09391 .469306 .46931

.14081 .468609 .46861

.18761 .467254 .46725

.23423 .465030 .46503

.28058 .461734 .46173

.32653 .457178 .45718

.37196 .451190 .45119

.41672 .443628 .44363

.46063 .434379 .43438

.50354 .423369 .42337

.54525 .410565 .41057

.58559 .395985 .39598

.62439 .379692 .37969

.66147 .361804 .36180

.69670 .342487 .34249

.72993 .321951 .32195

.76106 .300445 .30045

.79000 .278251 .27825

.81669 .255669 .25567

.86330 .210580 .21058

.90107 .167560 .16756

.93060 .128613 .12861

.95288 .095113 .09511

.96905 .067710 .06771

.98037 .046370 .04637

.98797 .030535 .03054

.99289 .019329 .01933

.99594 .011759 .01176

.99777 .006874 .00687

.99882 .003861 .00386

.99940 .002084 .00208

.99970 .001081 .00108

.99986 .000538 .00054

.99994 .000258 .00026
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Fig. 2. Numerical results of f (g) and its derivatives for various
values of b.

Table 2
Comparison of the results for the laminar boundary layer over
a wedge

b f 00(0)

Present method Rajagopal et al. [3]

.00 0.469600 0.469600

.05 0.531725 0.531130

.10 0.587889 0.587035

.20 0.687641 0.686708

.30 0.775524 0.774755

.40 0.854937 0.854421

.50 0.927906 0.927680

.60 0.995758 0.995836

.70 1.059421 –

.80 1.119574 1.120268

.90 1.176730 –
1.00 1.231289 1.232585
1.20 1.333833 1.335722
1.60 1.518488 1.521514
2.00 1.683095 –
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Fig. 3. Dimensionless temperature profiles for b = 0 and
various Prandtl number.
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Fig. 4. Dimensionless temperature profiles for b = 2 and
various Prandtl number.
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results indicate that steeper velocity profiles are associ-
ated with larger values of the wedge angle parameter,
b. The wedge angle parameter is a measure of the pres-
sure gradient, and so a positive value of b indicates a
negative (or favorable) pressure gradient. For acceler-
ated flows (i.e. positive values of b), the f 0 profiles
merely squeeze closer and closer to the wall, and over-
shoot or backflow phenomena are not noted. Table 2
presents a comparison of the current numerical results
of f 00(0) for various values of b with those presented
by Rajagopal et al. [3]. It is noted that there is good
agreement between the two sets of results. Figs. 3 and
4 plot the dimensionless temperature distributions of
the Falkner–Skan boundary-layer problem for the Pra-
ndtl number range of 0.001–10,000. Finally, Fig. 5
shows the dimensionless temperature profiles for various
values of b and Prandtl number. It is noted that the
maximum difference in the dimensionless temperature
distributions for various values of b occurs at larger
values of Prandtl number, and that this difference de-
creases as the Prandtl number decreases. Table 3 pre-
sents a comparison of the current numerical results of
dh(g)/dg for different values of b and Prandtl number
with those presented by White [9]. Once again, it is seen
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Fig. 5. Dimensionless temperature profiles for various values of b and Prandtl number.

Table 3
Numerical values of dhðgÞ=dg for various Prandtl numbers and wedge angle parameters

Pr
dhðgÞ
dg

b = 0.0 0.3 1.0 2.0

White [9] Present White [9] Present White [9] Present White [9] Present

0.001 0.02449 0.02449 0.02467 0.02468 0.02483 0.02483 0.02492 0.02492
0.003 0.04154 0.04154 0.04206 0.04207 0.04252 0.04253 0.04278 0.04279
0.006 0.05759 0.05760 0.05859 0.05862 0.05947 0.05949 0.05999 0.06001
0.010 0.07296 0.07296 0.07455 0.07458 0.07597 0.07599 0.07681 0.07683
0.030 0.11935 0.11935 0.12353 0.12360 0.12374 0.12740 0.12972 0.12968
0.060 0.16050 0.16050 0.16791 0.16802 0.17480 0.17488 0.17903 0.17908
0.100 0.19803 0.19803 0.20908 0.20923 0.21950 0.21962 0.22600 0.22608
0.300 0.30371 0.30372 0.32783 0.32812 0.35147 0.35168 0.36681 0.36695
0.600 0.39168 0.39168 0.42892 0.42932 0.46633 0.46661 0.49130 0.49149
0.720 0.41786 0.41809 0.45929 0.45998 0.50113 0.50174 0.52928 0.52980
1.000 0.46960 0.46960 0.51952 0.51999 0.57047 0.57080 0.60520 0.60541
2.000 0.59723 0.59723 0.66905 0.66963 0.74372 0.74412 0.79599 0.79624
3.000 0.68596 0.68596 0.77344 0.77409 0.86522 0.86565 0.93036 0.93062
6.000 0.86728 0.86728 0.98727 0.98806 1.1147 1.1152 1.2069 1.2072
10.000 1.02974 1.02974 1.1791 1.1800 1.3388 1.3394 1.4557 1.4561
30.000 1.4873 1.4873 1.7198 1.7210 1.9706 1.9714 2.1577 2.1582
60.000 1.8746 1.8746 2.1776 2.1791 2.5054 2.5063 2.7520 2.7525
100.000 2.2229 2.2229 2.5892 2.5910 2.9863 2.9874 3.2863 3.2869
400.000 3.5292 3.5292 4.1331 4.1359 4.7894 4.7910 5.2890 5.2900
1,000.000 4.7901 4.7901 5.6230 5.6268 6.5291 6.5314 7.2212 7.2225
4,000.000 7.6039 7.6039 8.9481 8.9540 10.4112 10.4147 11.5320 11.5341
10,000.000 10.3201 10.3201 12.1577 12.1657 14.1583 14.1630 15.6928 15.6956
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that there is good agreement between the two sets of
results.
5. Conclusions

The present paper has discussed the applicability of
the differential transformation method to obtain the
temperature distributions for a flow passing over a
wedge. The differential transformation method which
has been applied within the current study directly yields
a power series, close-form solution for a system of non-
linear differential equations and requires no iterative
calculations. Numerical results of the Falkner–Skan
thermal boundary-layer problem have been presented
in order to demonstrate the accuracy and versatility of
the differential transformation method. It has been dem-
onstrated that the obtained numerical results for the
velocity and temperature distributions are in good
agreement with those provided by other numerical
approximation methods. In this paper, the proposed
method provides an effective numerical scheme for
determining the solutions of the nonlinear Falkner–Skan
thermal boundary-layer problem.
References

[1] V.M. Falkner, S.W. Skan, Some approximate solutions of
the boundary layer equations, Philos. Mag. 12 (80) (1931)
865–896.

[2] T.Y. Na, Computational Methods in Engineering Boundary
Value Problems, Academic, New York, 1979.

[3] K.R. Rajagopal, A.S. Gupta, T.Y. Na, A note on the
Falkner–Skan flows of a non-Newtonian fluid, Int. J. Non-
Linear Mech. 18 (1983) 313–320.

[4] H.T. Lin, L.K. Lin, Similarity solutions for laminar forced
convection heat transfer from wedges to fluids of any
Prandtl number, Int. J. Heat Mass Transfer 30 (1987) 1111–
1118.

[5] C.H. Hsu, C.S. Chen, J.T. Teng, Temperature and flow
fields for the flow of a second grade fluid past a wedge, Int.
J. Non-Linear Mech. 32 (5) (1997) 933–946.

[6] A. Asaithambi, A finite-difference method for the Falkner–
Skan equation, Appl. Math. Comput. 92 (1998) 135–141.

[7] C.H. Hsu, K.L. Hsiao, Conjugate heat transfer of a plate fin
in a second-grade fluid flow, Int. J. Heat Mass Transfer 41
(8–9) (1998) 1087–1102.

[8] B.L. Kuo, C.K. Chen, Application of a hybrid method to
the solution of the nonlinear Burgers� equation, Trans.
ASME, J. Appl. Mech. 70 (2003) 926–929.

[9] F.M. White, Viscous Fluid Flow, second ed., McGraw-Hill,
New York, 1991, pp. 242–249.


	Heat transfer analysis for the Falkner -- Skan wedge flow by the differential transformation method
	Introduction
	Mathematical analysis
	Numerical formulation mdash differential transformation method
	Numerical results and discussion
	Conclusions
	References


